

UPPSALA UNIVERSITET

Understanding Wind Power in Forested Landscapes:

High-Fidelity Aeroelastic Simulations

Mohammad Mehdi Mohammadi

What will I talk about?

- Part of an ongoing research
- Effect of terrain features modeling choice on wind turbine performance and loads
- To show what we can do!
- 3 cases are simulated using LES based on Ryningsnäs site with only one turbine in the domain:
- 1. Flat surface + homogeneous forest
- 2. Only terrain
- 3. Terrain + realistic forest
- Note that these are only <u>preliminary</u> results.

Aeroelastic setup

- Actuator sector model (ASM) for blades, IEA 3.4MW
- Why actuator sector?
- A disk (ADM) is fast (large Δt), no blade representation
- A line (ALM) for each blade is slow (small Δt), more accurate
- ASM is as fast as ADM and as accurate as ALM:
 - gives unsteady loads and wake profile
- Inflow is not the only imp. factor but also the turbine wake
- Flexible
- Aeroelastic calculations (deflections, loads):
- Blades: ElastoDyn (Euler-Bernoulli) modal approach or more advance GEBT (Beamdyn)
- Tower (drag line)
- Hub (drag point)
- For controller: Open Source ROSCO
- Pitch, torque, and yaw

Results: inflow

Results: inflow

Results: inflow

Different Modeling choice -> Significantly different inflow at the same geostrophic wind forcing

Results: controller outputs

Different Modeling choice -> Significantly different inflow -> Different controller response

30

Results: generator power

UNIVERSITET

Results: wake flow

Results: wake flow

Different Modeling choice ->
Significantly Diff.
inflow -> Diff.
controller response
-> Diff. Power ->
Diff. Wake profile

Results: DELs

Not to generalize! Results for different hub velocities!

Different Modeling choice -> Significantly Diff. inflow -> Diff. controller response -> Diff. Power -> Diff. Wake profile -> Diff. loads

Outlook

- General research questions
 - Improved day-ahead and minute-scale forecasting of wind energy over forested areas
 - Wake and park flows in forested areas
 - Faster wake recovery vs. blockage
 - Transient effects
 - Importance of LLJ, intermittent turbulence, canopy waves
 - Interactions with terrain
 - Specific aspects of (heterogenous) forests on flow separation and gravity waves
 - Fatigue load calculations and AEP predictions
 - Are more flow regimes necessary to reach acceptable accuracy?
 - · High turbulence vs high shear and veer

- Specific topics / research objectives
 - Improved industrial models
 - Effective roughness calculation
 - Tuning of engineering wake models
 - Forest capability in RANS simulations
 - The role of the drag coefficient in CFD
 - The role of humidity fluxes and evapotranspiration on the diurnal cycle
 - The micro/meso coupling
 - The potential role and limits of ML/AImethods
 - Methods to improve fatigue load calculations
 - Better and more adaptive synthetic turbulence models for forest and complex terrain

UPPSALA

UNIVERSITET

 Faster LES through non-traditional techniques such as Lattice-Boltzmann methods